Innovative Simulation Tools, Shielding and Instrumentation 2019
June 29, 2019 M C P L

EUROPEAN
SPALLATION
SOURCE

Saint Petersburg, Russia

Developments in the MCPL project

T. Kittelmann
ESS Detector Group

Monte Carlo Particle Lists

Acknowledgements:
E. Klinkby* E.B. Knudsen*
P. Willendrup*? K. Kanaki?
D. Di Julio? X.-X. Cai'?-3

1: DTU 2: ESS 3: CSNS

T. Kittelmann ISTSI12019 s

I Overview

* Recap of the MCPL project, capabilities, tools

- Focus mostly on more recently added features
marking those added post-Coimbra or after
the MCPL paper was published as 5%

* Discuss future plans, ideas, wishes

2/20

T. Kittelmann ISTSI12019 s

Recap: Key MCPL features

MCPL: Monte Carlo Particle Lists

* Itis a simple binary file-format. Each file contains a list of MC
particles with enough info to seed simulations.

* MCPL files can contain meta-data. This makes it possible to tell what
data is in a file, where it came from, how it should be interpreted.

* The format is flexible: can contain a lot of information if needed, or
can contain only minimal information if small file-size is important.
Can be gzip'ed.

* Itis easy to make code dealing with MCPL, so it is easy to make
plugins & converters for the various Monte Carlo frameworks.
— End-users will simply use those converters.

* MCPL comes with tools and APIs, such as for inspecting or editing
contents.

* Well-defined versioned format, focus on backwards compatibility. , .,

T. Kittelmann ISTSI2019 Loy

... focus on availability:

* Extremely liberal license (CCO) encourage bundling.
* API for C/C++/Python code (all versions).

* “fat” single-file versions of all C code (even embedding zlib)

* Can “pip install” Python API+pymcpltool.

... and documentation:

Computer Physics Communications 218 (2017) 17-42

Computer Physics Communications

v . T
Contents lists available at ScienceDirect COMPUTER PHYSICS
COMMUNICATIONS

journal homepage: www.elsevier.com/locate/cpc

Monte Carlo Particle Lists: MCPL"
T. Kittelmann®*, E. Klinkby ", E.B. Knudsen ¢, P. Willendrup ©?, X.X. Cai *", K. Kanaki *

3 European Spallation Source ERIC, Sweden

® DTU Nutech, Technical University of Denmark, Denmark
© DTU Physics, Technical University of Denmark, Denmark

ARTICLE INFO

ABSTRACT

Article history:
Received 9 September 2016

Received in revised form 31 March 2017
Accepted 20 April 2017

Available online 8 May 2017

Keywords:

MCPL

Monte Carlo simulations
Particle storage

File format

Geant4

Abinary format with lists of particle state information, for interchanging particles between various Monte
Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the
scientific community, along with converters and plugins for several popular simulation packages.
Program summary

Program Title: MCPL

Program Files doi: http://dx.doi.org/10.17632/cby92vsv5g.1

Licensing provisions: CCO for core MCPL, see LICENSE file for details.

Programming language: C and C++

External routines/libraries: Geant4, MCNP, McStas, McXtrace

Nature of problem: Saving particle states in Monte Carlo simulations, for interchange between simulation
nackages or for rense wirhin a sinole nackaoe.

Detailed paper for release 1.1.0:
(DOI10.1016/j.cpc.2017.04.012)

View on GitHub @

MCPL Monte Carlo Particle Lists

home | get | usage | hooks | about | contact

Welcome to the home of MCPL, a binary file format for usage in physics simulations.

MCPL files contain lists of particle state information, and allows for easy storage and interchange of
particles between various Monte Carlo simulation applications. It is implemented in portable C code
and is made available to the scientific community, along with converters and plugins for several

popular simulation packages.

MCPL is described in great detail in the MCPL paper, and in particular details of the file format itself
can be found in section 2. The present web-page serves as an online home for MCPL, providing both
quick recipes and updated information where needed. You can download and try out the MCPL

distribution right away, or use the menu above to navigate to more information.

Latest news:

= June 21, 2019: v1.3.0 released. In addition to general maintenance, this release brings support for
PHITS and anew mcpltool --forcemerge option.

= September 26, 2018: v1.2.3 released. This release brings support for MCNP 6.2.

= March 7, 2018: v1.2.2 released. This is a pure maintenance release.

= lanuans 24 9018 MEDI ic naws availahla an tha Duthan Dacbaga Indavl Thie nin inetall

* Online docs with recipes

h A/ Is.github.io/ |/
(https://mctools.github.io/mcpl/) 470

https://mctools.github.io/mcpl/

T. Kittelmann ISTSI12019 s

Codes with MCPL support

2016

McSt
Ve el

McXtrace . ~

2017 ,
—%.WM\—» wet I
PHITS & GEANT4 m

A SIMULATIO|

2016

Certainly have critical mass by now! :-) <P Avallable <@ B Missing 5/20

T. Kittelmann ISTSI12019 s

What form does MCPL support take?

¢ Built-in support in instrument simulation codes:

- McStas, McXtrace, VITESS, RESTRAX/SIMRES Most work done by
developers of these

- Batteries included — great for users! applications!

* (C++ helper classes for particle capture or event seeding available for Geant4
(in line with how most Geant4 users work) Me

* MCNP support relies on inbuilt ability to dump particles to/seed from “SSW"”
files.

Me+E. Klinkby

— We provide ssw2mcpl and mcpl2ssw tools.

- Somewhat high maintenance burden due to plethora of MCNP flavours +
closed nature of programme.

- Complication is that particles need “surface ID". Can be provided as
MCPL userflags or via global setting.

- mcpl2ssw must be provided with sample SSW files from target setup.

« PHITS support: Like MCNP, but simpler. More details later.| Me+D. Di Julio
= 6/20

I Data in MCPL files

All generic parameters always
Available to reading code, no
matter source of MCPL file.

Is actually stored!

Flexibility in how this

Detailed layout of the data

Sa

T. Kittelmann ISTSI2019 Loy

Particle state information

Field Description

PDG code 32 bit integer indicating particle type.
Position Vector, values in centimetres.

Direction Unit vector along the particle momentum.
Kinetic energy Value in MeV.

Time Value in milliseconds.

Weight Weight or intensity.

Polarisation Vector.

User-flags 32 bit integer with custom info.

associated with each particle in an MCPL file.

Particle data layout

Presence * Count & type Description

OPTIONAL 3 x FP Polarisation vector (if enabled in file).

ALWAYS 3 x FP Position vector

ALWAYS 3 x FP Packed direction vector and kinetic energy.
ALWAYS 1 x FP Time.

OPTIONAL 1 x FP Weight (if file does not have universal weight).
OPTIONAL 1 x INT32 PDG code (if file does not have universal PDG code).
OPTIONAL 1 x UINT32 User-flags (if enabled in file).

This implies from 28 to 96 bytes/particle. Already good, but
most files are gzip’ed (by MCPL or user) and consume less. 7/ 20
(NB: MCPL code can read .mcpl.gz files directly)

Average packing precision

T. Kittelmann ISTSI12019 s

Novel packing of direction vectors: Optimal

10

1072

storage size without precision loss!

HRAYE YOUR CRKXE

>
“

32 bit FP

Unit vector packing scheme
No packing (3FP)

Adaptive Projection (2FP+1bit)
Adaptive Projection (2FP)
Spherical coordinates (2FP)
Octahedral Projection (2FP+1bit)

Spherical coords

10_14 |
Static Projection (2FP-+1bit)
1016 MCPL (2016)
s MCPL (2017+)
10_ L 1 1 | | 1] L 1 |
1072° 107 107 107" 107" 107 107 107 107* 1072 10°

Ideal (unpacked)

Third coordinate of unit vector

Breakdown of the Adaptive Projection Packing method, in which a unit vector, (uy, uy, u,) is stored into two floating
point numbers, FP1 and FP2, and one extra bit of information.

Adaptive Projection Packing

Scenario FP1 FP2 +1 bit Packed signature

|uy| largest 1/u, uy sign(iy) [FP1| > 1, |[FP2| < 1

[uy| largest Uy 1/u; sign(uy) [FP1| < 1, |[FP2| > 1 8/20
|u,| largest Uy uy sign(u;,) [FP1| < 1, |[FP2| < 1

T. Kittelmann 1STSI2019

Example file
Inspected with (py)mcplitool

Opened MCPL file recordfwd.mcpl.gz:

Basic info
Format : MCPL-3
No. of particles : 542199
Header storage : 826 bytes
Data storage : 17350368 bytes

EIIIIIIIIIIIIIaIIIIQIII|_
ource : "Geant4"

umber of comments : 8

"Created with the Geant4 MCPLWriter in the ESS/dgc
"MPCLWriter volumes considered : ['RecordFwd']"
"MPCLWriter steps considered : <at-volume-exit>" .
"MPCLWriter write filter : <unfiltered>" used to create file

"MPCLWriter user flags : <disabled>" oBinary “blobs” keep more Comp|ete
"MPCLWriter track kill strategy : <none>"

-> comment "ESS/dgcode geometry module : G4Stheometr1es/GeoSi< COﬂfigUFatiOﬂ details, here ESS-DG
-> comment "ESS/dgcode generator module : G4StdGenerators/Simp! geo/gen parameters. Could be

Number of BLobS @« of McStas instrument file, input deck

-> 74 bytes of data with key "ESS/dgcode_geopars"
-> 231 bytes of data with key "ESS/dgcode_genpars" from MCNP/PHITS, etc.

Particle data format
User flags : no
Polarisation info : no
Fixed part. type ! no

o rebinian'™ " | Loa,{uO") NB: compresses (o
Endianness : little / 19.2bytes/particle
Storage : 32 bytes/particle

= =n

Custom meta-data
*This file is from ESS-DG Geant4
« Comments reminding us of setup

-> comment
-> comment
-> comment
-> comment
-> comment
-> comment

] IIIIIIIIIIIIOIIIIIIII

~No o~ WNRE O
|||||¢

S

“TanpnnnRRRRRRR

index pdgcode ekin[MeV] x[cm] ylcm] z[cm] uy time[ms]
22 1.2238 -13.327 3.5344 40 . -0.036564 . 0.14113

22 0.12059 -15.976 14,788 40 . 0.082934 . 0.14113

22 0.10212 -22.452 -7.1864 40] -0.35527] 0.14113

22 7.695 . . 40 . 0.47066 . 0.20354

40 0 0.1829

AR 0.33885 0. .0047377

= 0.38747 . .0047367
PDG codes: 2112 neutron 22 = gamma o oetat o 0oL

More at http://pdg.Ibl. gov/2015/reV|ews/rpp2015 -rev-monte-carlo-numbering.pdf 0 0.1829
: : 0 0.1829

http://pdg.lbl.gov/2015/reviews/rpp2015-rev-monte-carlo-numbering.pdf

ICAPI

* Stable C API for reading/creating/editing MCPL
* Use to create most application-specific hooks

* Some users use it to analyse or tailor MCPL files

#include "mcpl.h"
void read example()

{

mcpl file t f = mcpl open file("myfile.mcpl");
const mcpl particle t* prtcl;
while ((prtcl = mcpl read(f))) {

//<Access here: prtcl->ekin, prtcl->time, ...>
}
: . #include "mcpl.h"
mepl_close file(f); void create example()
{

C not C++ to support more apps
(C is “lingua franca” of SW)

int 1i;

mcpl particle t * prtcl

Despite being C, interface is
“object oriented” and hopefully easy.

}

mcpl close outfile(f);

T. Kittelmann ISTSI12019 s

mcpl outfile t f = mcpl create outfile("myfile.mcpl");
mcpl _hdr_set srcname(f,"Custom C code");

mcpl _hdr_add comment(f,"Just an example.");

mcpl _enable doubleprec(f);

= mcpl get empty particle(f);
for (i =0; 1 <1000; ++i) {

//<Set here: prtcl->ekin, prtcl->time, ...>

mcpl add particle(f,prtcl);

T. Kittelmann ISTSI2019 Loy

Custom filtering via C API

Filtering files with custom code in
very few lines:

mcpl_transfer_metadata does all the
hard work of configuring output file

#include "mcpl.h"
void filter example()
{
mcpl file t fi = mcpl open file("all.mc);
mcpl outfile t fo = mcpl create outfile("lowEneutrons.mcpl");
mcpl transfer metadata(fi, fo);
mcpl hdr add comment(fo,"Only neutrons, ekin<0.1MeV");
const mcpl particle t* prtcl;
while ((prtcl = mcpl read(fi))) {
if (prtcl->pdgcode == 2112 && prtcl->ekin < 0.1)
mcpl transfer last read particle(fi,fo);

}

mcpl close outfile(fo); ‘\\\

mcpl close file(fi); \
) e
mcpl_transfer_last_read_particle from
MCPL v1.3.0 prevents lossy unpacking+repacking

of data. If need to edit particles fields, replace with:
mcpl_add_particle(fo,prtcl);

11720

T. Kittelmann ISTSI2019 Loy

Python API (from MCPL v1.2.0)@

To enable MCPL Python module, download mcpl.py or do | @ Technical details:
python -mpj_p install mcpl - Pure Python, does not use mcpl.c

(this incidently also installs the pymcpltool...) - Usage of Numpy for efficiency.

- Works with both Python 2 and 3.

import mcpl

myfile = mcpl.MCPLFile("myfile.mcpl")

for p in myfile.particles:

print(p.x, p.y, p.z, p.ekin) straight-forward

Can also process blocks of
N particles at a time, for
increased efficency.

print(myfile.sourcename,
myfile.nparticles,

myfile.opt_singleprec) | Can of course access
for cmt in myfile.comments: meta data as well.

print('Comment: "%s"' % cmt)

- Readonly access for now.

-«—— | Accessing particles is

for p in myfile.particle blocks:

—> print(p.x, p.y, p.z, p.ekin)

Numpy arrays of length N

12720

T. Kittelmann ISTSI12019 s

I Command-line tools

* mcpltool and pymcpltoolse", both can:

- Inspect files, extract binary blobs to stdout

- Convert MCPL to (inefficient) ASCII files for interoperability with software
lacking MCPL support.

— Show all options with --help

* The mcpltool:

- Compiled executable with C compiler (from “fat” or proper linked code)
- Can editfiles:

* Merge files

* Extract subset of particles to smaller file (select by type or file idx)

* Repair files leftover by crashed jobs
* The pymcpltool e

— Built upon Python API (fast because of Numpy)

- Download 1 file + run, or “pip install mcpl”

- Can provide statistics (see next slide) 13720

T. Kittelmann ISTSI12019 s

I Merging files

Ability to merge files is crucial for collecting output of
concurrent simulations.

- But other use-cases exists for combining files.

* Done via “mcpltool --merge” or “mcpl_merge_files” in C API.

* As a quality concern, MCPL is conservative about not
producing files with misleading meta-data.

* All meta-data must be identical and will be transferred to the
newly created file.

* On several occasions this restriction has caused problems...

14720

T. Kittelmann ISTSI2019 Loy

New “mcpltool --forcemerge” in release 1.3.0 s

* Can always merge, but will throw away all meta-data.

- Should be considered as a last resort only!

[) Opened MCPL file forcemeiged.mcpl:
t d t Basic info
Format : NCPL-3
O accommo a e No. of particles : 1170823
. . . Header storage : 91 bytes
particles from all input files. Data storage i 74715964 bytes
Custom meta data
. . Source : "mcpl_forcemerge_files (from MCPL v1.3.0)"
—_ - Number of comments :
Double-prec, polarisation, Wi G S 3

fixed pdg/weight on demand.

ixed part. type

- Discard userflags by default ived part! weignt
[override with --keepuserflags] :

pdgcode ekin[MeV]
22 0.040287
22 0.048627
22 0.044083

* Loss-less particle data transfer
whenever possible.

22 0.042855
22 0.05
22 0.049592
22 0.042521
22 0.04898
22 0.045358
22 0.04368

©CoO~NOOOBWNEO

T. Kittelmann ISTSI2019 Loy

File statistics with pymcpltool@

pymcpltool --stats <filename>

nparticles 1 1172044
sum(weights) : 1.17206e+06

ekin [MeV] : 0.68247 14,1939 9.7657e-11 1889. 4
X [em] : 0.0872454 52.1543 -100 10¢
y [cm] : 0.0192493 52.1484 -100 10¢(
z [cm] : 98.2832 78.6334 .55112e-17
ux : .000322662 0.558483 -l
uy 3 .59925e-05 0.558487 -0.999998
uz 3 0.236649 0.56585 -1
time [ms] : 24658 4.3971e+06 1.462e-06
weight : 1.00001 0.00483571 0.654834
polx : .000415962 0.0178829
poly 3 .000166385 0.00715315
: .000499154 0.0214595
pdgcode : (gamma) 848745
2112 (n) 318868
11 (e-) 3922
-11 (e+) 431
2212 (p)
211 (pi+)
-12 (nu_e-bar)
1000016030 (T)
14 (nu_mu)
1000020040 (alpha)
-211 (pi-) (gaﬁﬁzma) 2 I
[values] i 72.41% 27.21% o0, 400007 I
20000 1

|
x [cm] (weighted)

140000 A

120000

100000 A

140000 80000 ~
120000 60000

100000 4 40000 1

80000 20000 1

60000 A

:::IIIIIII

0
—-100 =75 -50 =25 0 25 50 75
min=-100, max=100, mean=0.0872454, rms=>52.1543, integral=1.17206e+

0 (Ox000000O0) 1.17206e+06 (100.00%)
[values] [weighted counts]

-0.75 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
min=-1, max=1, mean=0.236649, rms=0.56585, integral=1.17206e+06

T. Kittelmann ISTSI2019 Loy

PHITS support (new in release 1.3.0) =*

Added in close collaboration with Douglas Di Julio, ESS.

* Use PHITS capability to dump particles in certain tallies to
so-called “"dump files”, and to seed runs from such files.

* Dump files can be converted to/from MCPL format via
two new tools: phits2mcpl and mcpl2phits

- Tools shipped with MCPL, but quick access by
downloading “fat” versions from MCPL website.

* This all resembles how we support MCNP

- Difference is that PHITS dump files do not have
(complicated) header sections — simpler support but

no self-describing meta-data available.
17720

T. Kittelmann ISTSI12019 s

PHITS cfg for dump file output &

e (Can be output from t-cross, t-product and t-time tallies:

[t-cross]
, reg =1 i p— Tally-specific stuff
r-from r-to area °
]
, 1 2 1.0

-MW?mfffffJ E E E E EEm =

12345678910141516 i : :
"file = mydump .4— Dump-file cfg with 13 variables
1 - (1=type, 2=x, 8=ekin, etc.)

* Contents are flexible, but we support only the variant above, and
the following with 10-variables which excludes polarisation info:

dump = 10
123456789 10

* PHITS dump files have no header, but phits2mcpl can detect
number of variables and thus distinguish the two above variants
(but don't swap/replace individual variables!) 18720

T. Kittelmann ISTSI2019 Loy

Seed PHITS from dump files &

* Input cfg must use s-type=17 and appropriate dump file cfg:

[parameters]
maxcas = 123456 # nparticles per batch
maxbch = 1 # number of batches

[source]
s-type = 17
file = phits.dmp
dump = 13

123456789 10 14 15 16

* mcpl2phits outputs the 13-variable variant PHITS dump files by
default, but the --nopol flag can be used to produce the 10-
variable variant without polarisation info.

* For now recommend setting maxbch=1 and maxcas to the
number of particles in the file. Will revisit this over the coming
months, since >1 batch might be desirable. 19720

T. Kittelmann ISTSI12019 s

Outlook / wishful thinkin

* Github issue 6: Mergeable statistics? E.g. “NEvtsSimulated” which
would be added when files are merged. Would allow easier book-keeping.

* Github issue 44: In ESS Detector Group we have internal C++-based
enhanced tools for working with MCPL files, based on our ExpressionParser
and histogram classes:

mcplfilterfile in.mcpl.gz out.mcpl.gz “time<2ms and is_neutron and neutron_wl>2.2Aa”

mcplbrowse in.mcpl.gz where “pdgcode!=11 and ekin<10keV”

gen.input file = "myfile.mcpl.gz"
G\GELA':IT4 gen.input filter = "ekin>lkeV && sqrt(x*2+y”2) < 10 cm"

- Itwould be great to export these tools to the greater community, but
needs significant work to disentangle and prepare.

IMHO if the Python API would not be read-only, we could easily build and
easily distribute a lot of great new tools (e.g. GUI for editing). It would also be
easy for people to compose/filter their own MCPL files from cmdline or codd! 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

